Cation channel regulation by COOH-terminal cytoplasmic tail of polycystin-1: mutational and functional analysis.
نویسندگان
چکیده
Polycystin-1 (PKD1) mutations account for approximately 85% of autosomal dominant polycystic kidney disease (ADPKD). We have shown previously that oocyte surface expression of a transmembrane fusion protein encoding part of the cytoplasmic COOH terminus of PKD1 increases activity of a Ca2+-permeable cation channel. We show here that human ADPKD mutations incorporated into this fusion protein attenuated or abolished encoded cation currents. Point mutations and truncations showed that cation current expression requires integrity of a region encompassing the putative coiled coil domain of the PKD1 cytoplasmic tail. Whereas these loss-of-function mutants did not exhibit dominant negative phenotypes, coexpression of a fusion protein expressing the interacting COOH-terminal cytoplasmic tail of PKD2 did suppress cation current. Liganding of the ectodomain of the PKD1 fusion protein moderately activated cation current. The divalent cation permeability and pharmacological profile of the current has been extended. Inducible expression of the PKD1 fusion in EcR-293 cells was also associated with activation of cation channels and increased Ca2+ entry.
منابع مشابه
Regulation of Polycystin-1 Function by Calmodulin Binding
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common genetic disease that leads to progressive renal cyst growth and loss of renal function, and is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The PC1/PC2 complex localizes to primary cilia and can act as a flow-dependent calcium channel in addition to numerous other signaling fun...
متن کاملActivation of a latent nuclear localization signal in the NH2 terminus of γ-ENaC initiates feedback regulation of channel activity.
Proteolytic enzymes cleave the epithelial Na(+) channel (ENaC) at several positions releasing, in part, the NH(2) terminus of the γ-subunit. Cleavage increases ENaC activity by increasing open probability; however, the role of polypeptides cleaved from the channel core remains unclear. We find that the cytosolic NH(2) terminus of γ-ENaC unexpectedly targets to the nucleus being particularly str...
متن کاملProtein Phosphatase-1α Interacts with and Dephosphorylates Polycystin-1
Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence...
متن کاملAnalysis of the cytoplasmic interaction between polycystin-1 and polycystin-2.
Autosomal dominant polycystic kidney disease (ADPKD) arises following mutations of either Pkd1 or Pkd2. The proteins these genes encode, polycystin-1 (PC1) and polycystin-2 (PC2), form a signaling complex using direct intermolecular interactions. Two distinct domains in the C-terminal tail of PC2 have recently been identified, an EF-hand and a coiled-coil domain. Here, we show that the PC2 coil...
متن کاملRegulation of polycystin-1 ciliary trafficking by motifs at its C-terminus and polycystin-2 but not by cleavage at the GPS site.
Failure to localize membrane proteins to the primary cilium causes a group of diseases collectively named ciliopathies. Polycystin-1 (PC1, also known as PKD1) is a large ciliary membrane protein defective in autosomal dominant polycystic kidney disease (ADPKD). Here, we developed a large set of PC1 expression constructs and identified multiple sequences, including a coiled-coil motif in the C-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2002